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This paper presents a new Lagrangian vorticity collocation method for
viscous, axisymmetric fluid flows with or without swirl. The velocity calculation
is performed using a representation of the vorticity field in terms of Gaussian
vortex rings for off-center points and Gaussian vortex blobs along the axis
of symmetry. A matrix equation for the element ‘‘amplitudes’’ is obtained
via a collocation approach, by fitting the vorticity representation to the known
vorticity values at the control points, prior to each velocity evaluation. This
matrix equation is solved using an iterative procedure, which both speeds
the calculation and filters out ‘‘noise’’ in the element amplitudes. Viscous
diffusion is accomplished with use of a diffusion velocity method, in which
control points are moved with the sum of the local fluid velocity and an
additional ‘‘diffusion velocity’’ that accounts for the effect of viscosity on
the spread of vorticity support. Derivatives are obtained by locally fitting a
polynomial function to control points about a given control point via a least-
square formulation and then differentiating the polynomial. This method is
found to maintain high accuracy even for very irregularly spaced control
points. The method introduced for viscous diffusion in the paper can also be
used for three-dimensional vortex methods in general. Q 1997 Academic Press

Key Words: vortex methods, collocation, Navier–Stokes equations, dif-
fusion

1. INTRODUCTION

Axisymmetric fluid flows, both with and without swirl, are an attractive choice
in modeling a wide variety of fluid flow phenomena, since they offer the resolution
of two-dimensional flows but exhibit many of the physical effects associated

302

0021-9991/97 $25.00
Copyright  1997 by Academic Press
All rights of reproduction in any form reserved.



303AXISYMMETRIC VORTEX METHOD

with vorticity stretching and re-alignment of more general three-dimensional
flows. Axisymmetric flows are frequently employed, for instance, to model
problems involving flame dynamics, thermal plumes, bluff-body wakes, and axial
transport and area-varying wave motion on vortex cores, to name only a few
examples. Axisymmetric swirling flows are even thought to exhibit such exotic
phenomena as finite-time vorticity singularities [1], simulation of which requires
extremely high resolution.

This paper presents a Lagrangian vorticity-based method for computation of
axisymmetric, viscous fluid flows with or without swirl. Lagrangian vorticity
methods are advantageous for simulation of a variety of problems because they
are naturally adaptive and they require control points only where significant
vorticity exists. Because the control points are transported by the flow, there is
no need to discretize the nonlinear advective term, thus avoiding problems with
numerical dissipation which plague computational methods utilizing fixed grids
[2]. For vortex-dominated flows in particular, Lagrangian vorticity methods have
the great advantage of directly evolving the vorticity field which is responsible
for generating the flow.

In standard vortex methods, the vorticity field is discretized by a large number
of vorticity ‘‘elements,’’ which in nonsingular vortex methods are required to over-
lap, such that the sum of the elements yields a smooth approximation to the desired
vorticity field. The vorticity field associated with each element is written as the
product of an ‘‘amplitude,’’ which is a measure of the total amount of vorticity
associated with that element, and a ‘‘weighting function’’ or ‘‘core function,’’ which
specifies how the vorticity is distributed in space. It is typical in vortex methods to
solve a transport equation for the element amplitude of a form similar to the inviscid
vorticity transport equation. Equivalently, several authors evolve the vorticity via
a transport equation, but then set the element amplitude equal to a constant times
the vorticity at the element centroid. There is a large literature on inviscid vortex
methods for both two- and three-dimensional flows which use this approach, exten-
sive citations to which can be found in the review articles of Leonard [3] and Meiburg
[4], including several convergence proofs. For the case of inviscid axisymmetric flows
without swirl, a vortex method of this type was employed by Acton [5] to study
evolution of large eddies in a jet flow. Strickland and Amos [6] utilized a similar
vortex method, but adopted the fast multipole expansion algorithm of Carrier et al.
[7] to axisymmetric flow without swirl.

An alternative approach, first suggested by Beale [8], is to fit the element ampli-
tudes to the vorticity values at the control points, where the vorticity is evolved
via the usual transport equation. This amplitude fitting procedure yields essentially
a collocation approach for solving the Biot–Savart integral. Beale [8] found that
the standard vortex method exhibits errors associated with severe distortion of the
initial arrangement of control points, which are avoided with use of amplitude
fitting. Unfortunately, the system of equations used to fit the element amplitudes
is quite large and is also rather ill-conditioned. Beale [8] utilized an iterative proce-
dure to solve this system; however, because the procedure converged to the exact
solution of the original ill-conditioned system, the solutions for element amplitude
were found to become quite noisy if the system were iterated to convergence. An
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approximate iterative procedure was proposed by Marshall and Grant [9], which
both converges very quickly and filters out high wavenumber noise due to ill-
conditioning of the original system. An error estimate and discussion of filtering
properties for this iterative procedure are given in the Appendix of the current
paper.

Another challenge for vortex methods lies in development of accurate methods
to simulate the viscous diffusion of vorticity. The primary difficulties with accounting
for diffusion lie in the problem of accurate calculation of derivatives of a function
known only on irregularly spaced control points and in the necessity to adaptively
modify the vorticity support to account for the effects of diffusion. A number of
differentiation algorithms have been previously proposed in the literature for use
with vortex methods [10, 11], but in our experience these methods tend to become
increasingly inaccurate as the irregularity in control point spacing increases (see
Ref. [12] for a further discussion of this issue). A common device used in simulating
boundary layer flows with vortex methods is to interpolate the Lagrangian control
points back onto a fixed grid within the boundary layer every few time steps [13,
14], so as to minimize problems with control point irregularity.

A new differentiation method is presented in this paper, which involves fitting
a polynomial function to some set of control points surrounding a point at which the
derivative is desired and then differentiating the polynomial fit. This differentiation
method has been tested by the authors for a variety two- and three-dimensional
flows, as well as axisymmetric flows, and has been found to yield highly accurate
results which are remarkably insensitive to irregularity of the control points. In
the present paper, this differentiation method is employed in conjunction with an
extension of the ‘‘diffusion velocity’’ scheme of Ogami and Akamatsu [15] and
Strickland and Kempka [16], which is used to adaptively move the control points
to account for the spreading of the vorticity support due to diffusion.

The Lagrangian vorticity collocation method presented here for axisymmetric
flows employs ring-shaped, overlapping elements with Gaussian vorticity variation
over the cross section for control points (in the r–z plane) which are located at
greater than some specified distance (which is on the order of an element radius)
from the symmetry axis. The vorticity at the control points of these ring-shaped
elements may have components in the axial, radial, and azimuthal directions. While
the azimuthal and radial vorticity must vanish as the distance r from the symmetry
axis approaches zero, additional blob-like elements are used to resolve the axial
vorticity along the symmetry axis. The induced velocity field is obtained by the
Biot–Savart integration over the vorticity field. The vorticity representation is fit
to the known vorticity values at the control points at every time step by a collocation
procedure which yields a matrix equation for the element amplitudes that is solved
using the iterative procedure given in [9].

The computational method is developed for inviscid swirling flows in Section 2,
and its extension to viscous flows is presented in Section 3. Validation tests of the
method are described for axisymmetric flows without swirl in Section 4, for viscous
diffusion in swirling flows in Section 5, and for area-varying wave dynamics on a
columnar vortex core in Section 6. Conclusions are given in Section 7.
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2. AXISYMMETRIC VORTICITY COLLOCATION METHOD
FOR INVISCID FLOWS

The transport equations for the components (gr , gu , gz) of vorticity in an axisym-
metric inviscid flow, with respect to a cylindrical polar coordinate system (r, u, z),
are given by

dgr

dt
5 gr

u
r

1 gz
u
z

, (1a)

dgu

dt
5

gu u
r

2
2grn

r
, (1b)

dgz

dt
5 gr

w
r

1 gz
w
z

, (1c)

where d/dt is the material derivative and (u, v, w) are the components of the velocity
vector in the radial, azimuthal, and axial directions, respectively. In a domain with
no internal or external boundaries, the velocity vector u can be written as = 3 b,
where the vector potential b is given by the integral

b(x, t) 5
1

4f
E

V

v(x9, t)
s

dn9. (2)

In (2), dn 5 r dr dz du while

s 5 ux 2 x9u 5 [(z 2 z9)2 1 r2 1 (r9)2 2 2rr9 cos(u 2 u9)]1/2. (3)

The vorticity at field point x9 can be written in terms of the base vectors (r̂, û, ẑ)
at point x as

v(x9, t) 5 [g9r cos(u 2 u9) 1 g9u sin(u 2 u9)]r̂
(4)

1 [g9u cos(u 2 u9) 2 g9r sin(u 2 u9)] û 1 g9z ẑ,

where (g9r , g9u , g9z) are the components of vorticity at x9.
To solve the integral (2) for b, a representation for the vorticity is used in terms

of overlapping vorticity elements of the form

v(x, t) 5 ON
n51

Gn(t) fn (x 2 xn), (5)

where xn denote the control point locations (the element centroids in the r–z plane),
which are convected by the local fluid velocity:

dxn

dt
5 u(xn , t). (6)
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The elements have the form of rings about the symmetry axis, such that
fn (x 2 xn) is independent of u. The element amplitude Gn represents the integral
of vorticity associated with the control point over the element cross section. The
weighting function fn (x 2 xn) specifies the distribution of vorticity within the element
core and is normalized such that

E
A

fn (x 2 xn) r dr dz 5 rn , (7)

where A denotes the r–z plane and rn is the radial position of control point n.
Substituting (5) into (2) and using (4), the contribution bn to the vector potential
b from element n can be written as

bn 5
r̂

4f
[Gr I1 1 Gu I2] 1

û

4f
[Gu I1 2 Gr I2] 1

ẑ
4f

Gz I3 , (8)

where

I1 5 E
V

cos(u 2 u9)
s

fn (x9 2 xn) dn9, (9a)

I2 5 E
V

sin(u 2 u9)
s

fn (x9 2 xn) dn9, (9b)

I3 5 E
V

fn (x9 2 xn)
s

dn9, (9c)

and (Gr , Gu , Gz) are components of Gn .
Letting the weighting function fn (x 2 xn) approach a constant times a Dirac delta

and using standard integral formulas [17] to solve (9a)–(9c), we obtain

bn 5
1

2f Srn

r D1/2

(Gr r̂ 1 Gu û) FS 2
kn

2 knDK(kn) 2
2
kn

E(kn)G
1

1
2f Srn

r D1/2

Gz kn K(kn)ẑ, (10)

where

k2
n ; 4rrn

(z 2 zn)2 1 (r 1 rn)2 (11)

and K(?) and E(?) are complete elliptic integrals. Taking the curl of (10), the velocity
contribution un from element n, with components (un , vn , wn), is given by
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un(r, u, z, t) 5
(z 2 zn)Gu kn

4f(rn r3)1/2k92
n
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1
2
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nD E(kn) 2 k92

n K(kn)G, (12a)

vn(r, u, z, t) 5 2
(z 2 zn)Gr kn

4f(rn r3)1/2k92
n

FS1 2
1
2
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2
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1
2

k2
n S1 1

r
rn
DJ E(kn)G, (12b)

wn(r, u, z, t) 5
knGu

8f(rnr3)1/2k92
n

[(r 1 rn)k2
n E(kn) 2 2r hE(kn) 2 k92

n K(kn)j], (12c)

where k92
n ; 1 2 k2

n . It is noted that un and wn depend only on Gu and are the same
as the Helmholtz solution for the velocity induced by a vortex ring of circulation
Gu . The only effect of the radial and axial vorticity components is on the swirling
component, vn , of the velocity. For optimal code performance, the elliptic integrals
K(?) and E(?) in (12) are precomputed over a uniform one-dimensional grid and then
obtained during the flow calculation using a lookup and interpolation procedure.

The velocity expressions (12) become singular as the field point x approaches
the element centroid xn . Element singularities are typically regularized in two- and
three-dimensional vortex blob methods by using nonsingular expressions for the
weighting function fn (x 2 xn), such as the Gaussian

fn (x 2 xn) 5 Cn exp F2
(z 2 zn)2 1 (r 2 rn)2

d2
n

G , (13)

where dn is the element ‘‘radius.’’ The constant Cn is determined from the normaliza-
tion condition (6) as

Cn 5
2rn

f1/2d 3
n 1 2frnd 2

n
. (14)

In an axisymmetric flow, where each element forms a ring about the symmetry
axis, the integrals (8) are very hard to evaluate exactly for nonsingular weighting
functions. We instead employ an approximate procedure which assumes that the
ratio dn/rn of the element radius to the radial position of the element contol point
is small. For Gaussian elements, the integrals (8) reduce to Laplace integrals which
can be evaluated with standard asymptotic methods [18]. The resulting regularized
velocity expressions are given simply by multiplying (12) by the regularizing function

j(x 2 xn) 5 1 2 exp F2
(z 2 zn)2 1 (r 2 rn)2

d 2
n

G . (15)

The self-induced velocity, wn , of a ring-like element has the form [19]

wn 5
Gu

4frn
Fln S8rn

dn
D1 CG ẑ, (16)
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where C is an order unity constant that depends on the vorticity profile within the
element cross section. The importance of the self-induced velocity, in comparison
with the velocity induced by all of the other vorticity elements, depends on the
resolution of the flow field. For instance, if an isolated vortex ring, of ring radius
R, core radius s, and strength G, is formed of N ring-like vorticity elements of equal
strength, the amplitude of each element will be given by Gn 5 (G/N)û. Assuming
that the element radii dn are fit to maintain a prescribed overlap of the fluid elements,
then dn > B(fs 2/N)1/2, where B is a constant of order unity. Taking rn > R for a
thin-core vortex ring, the ratio of the self-induced velocity of the vorticity elements
to the propagation velocity of the ring as a whole has the form [ln (ÏN) 1 E ]/
NF, where E and F are constants of order unity. Since the logarithmic terms change
very slowly with N, we find that the self-induced velocity contributes an amount
of order approximately 1/N of the total self-induced velocity of the ring. Some
computations showing the effect of the self-induced velocity are given by Strickland
and Amos [6], who concluded that for a well-resolved vorticity field, the element
self-induced velocity is negligible.

The regularization (15) has been tested using a variety of validation calculations
(see Section 5) and is found to perform well even in cases where dn 5 O(rn).
However, very close to the symmetry axis the thin-core assumption must clearly
break down, especially since the algorithm used to fit the element amplitudes (to
be stated presently) requires the elements to overlap sufficiently. To overcome this
difficulty, ring-type elements are excluded from a thin cylindrical region of radius
RE about the symmetry axis. To account for the nonzero axial vorticity that may
be present on the symmetry axis itself, a different blob-type element is introduced
whose centroid lies directly on the symmetry axis. We use a Gaussian form for the
blob-type elements of the same form as given in (13). The normalization for blob-
like elements is given by an expression similar to (6) with rn replaced by the
‘‘exclusion radius’’ RE on the right-hand side, which yields an expression for the
normalization constant for blob-like elements of the form

Cn 5
2RE

f1/2d 3
n
. (17)

The velocity induced by a blob-like element n at field point x has the form [9]

un(x, t) 5

P S3
2

,
ux 2 xnu2

R2
n

D d 3
n f1/2 Cn

4ux 2 xnu3
Gn 3 (x 2 xn), (18)

where P(a, z) is the incomplete gamma function, with limits P 5 0 at z 5 0 and
P 5 1 as z R y. When a 5 3/2 and z 5 x2, for some real variable x, a convenient
expression for P(3/2, x2) is given in terms of the error function erf(x) as [20]

P S3
2

, x2D5 erf(x) 2
2xe2x2

Ïf
. (19)
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The element amplitudes are obtained by fitting the vorticity representation (5)
to the known vorticity values at the control points (obtained by solution of (1)) at
every time step. Evaluating the representation (5) at the element control points
gives an N 3 N matrix equation for the amplitudes Gn of the form

vm 5 ON
n51

Gn(t) Wmn , (20)

where vm 5 v(xm) and Wmn ; fn(xm 2 xn). However, for overlapping elements,
the matrix equation (20) is ill-conditioned, as noted for two-dimensional vortex
blob methods by Beale [8], such that use of the exact solution of (20) for Gn in (5)
yields a very noisy vorticity representation, even when the actual vorticity field is
quite smooth. The difficulties in solving (20) are similar to those which arise, for
instance, in discretization of Fredholm integral equations of the first kind [21].

An approximate iterative procedure was introduced by Marshall and Grant [9]
for solution of (20), in which Gn is determined by

v(xm , t) 5 G(q11)
m O

n[Q(m)
Wmn 1 O

n[P(m)
WmnG(q)

n . (21)

In this procedure, the amplitude is temporarily assumed to be constant over a set
of points Q(m) sufficiently close to the given point m. The set P(m) is the comple-
ment of Q(m), and q is an iteration index. This iterative procedure both speeds up
the matrix inversion to an O(N) process and smooths out the vorticity representa-
tion. The procedure (21) is typically found to converge very quickly to a maximum
relative error of less than 1026 (within about 5–10 iterations), and the number of
iterations required for convergence seems to be independent of the number of
control points. This procedure can be used to simultaneously obtain the amplitudes
of both the off-center ring-like elements and the center blob-like elements, since
both types of elements are normalized in a similar way. Validation tests for this
iterative procedure are given in Ref. [9], and derivation of error and smoothing
properties of the iteration is discussed in the Appendix.

One advantage of the amplitude-fitting procedure (21) is that it is very simple
to eliminate or add new control points while maintaining a smooth vorticity field.
For instance, in the viscous flow calculations to be discussed in the next section, it
is desirable to combine control points which come too close to each other, in order
that the diffusion computation remains stable for a given time step. Combining two
control points, labeled 1 and 2, is performed by adding a new control point at the
centroid of points 1 and 2, where the vorticity at the new point is the average of
the vorticity at points 1 and 2, and then eliminating points 1 and 2. When a control
point of a ring-like element enters into the exclusion region with radius RE sur-
rounding the symmetry axis, the point is eliminated and a new point is added at
the reflected location of the original point. The vorticity at this new point is obtained
by interpolation using the blob representation (5). Because the element amplitudes
are continually refit to the vorticity values at the control points, the process of
adding and eliminating control points is simply a matter of changing resolution and
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does not result in a net vorticity loss or supplement to the flow field (aside from
fluctuations associated with discretization errors).

3. ALGORITHM FOR VISCOUS DIFFUSION

In order to account for viscous diffusion of vorticity in the context of a Lagrangian
method, it is necessary to implement some algorithm which can both (1) modify
the vorticity support to continuously cover the vorticity field with elements during
the diffusion process and (2) calculate derivatives of various quantities whose values
are known only on irregularly spaced points. Many early vortex methods simulated
viscous diffusion by adding a random walk to the element positions [22], which
both adaptively spreads the vorticity support and avoids the differentiation problem.
However, random walk is quite noisy, as demonstrated by Ghoniem and Sherman
[23], and it is not consistent with the procedure (21) used to fit element amplitudes.

(a) Modification of Vorticity Support

In the current paper, the vorticity support is modified adaptively by a three-
dimensional extension of the diffusion velocity scheme (originally proposed by
Ogami and Akamatsu [15] and corrected by Kempka and Strickland [16] for two-
dimensional flows). With this scheme, the control points are advected by the sum
of the local material velocity u and some vector v, called the diffusion velocity,
which accounts for the effect of diffusion on the vorticity support. The expression
for diffusion velocity typically used for two-dimensional flows, as proposed by
Ogami and Akamatsu [15], is

v ; 2
n

g
=g 5 2n=(ln g). (22)

The expression in terms of the logarithm in (22) is preferable, since both g and its
gradient may be small near the outer regions of the vorticity field without v being
small. The expression (22) for v can be interpreted simply as the vorticity flux
divided by the vorticity magnitude. If C is a closed circuit bounding an open surface
A, which are advected by the sum u 1 v of the material and diffusion velocities,
then the integral of the vorticity over A is invariant in time in a two-dimensional flow.

In a three-dimensional flow, sufficient condition for the integral of vorticity normal
to a convected open surface A to be invariant is that the diffusion velocity satisfy
the equation [16]

v 3 v 1 n= 3 v 5 0. (23)

A solution of Eq. (23) exists if and only if the vorticity vector v is complex-lamellar,
such that v ? (= 3 v) 5 0. While this condition may be satisfied in some special
cases, such as two-dimensional flow or axisymmetric flow without swirl, it does not
hold for general three-dimensional flows.
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The purpose of the diffusion velocity is to maintain coverage of the vorticity
support by the control points throughout the computation. In the current work, we
assume a locally two-dimensional diffusion process and ignore the diffusion velocity
in the direction of the vortex lines. It is noted that if the vorticity field is adequately
resolved at any given time, then there will already exist control points all along
vortex lines. While we hope that further research will bring improved expressions
for the diffusion velocity in three-dimensional flows, for the time being the expres-
sion (22) seems to be adequate for our purposes and will be used in the remainder
of the paper.

The rate of change of vorticity at a specified control point is not given by the
material derivative, dv/dt, since the control points are not advected as material
points, but instead by a different derivative, dvv/dt, defined by

dvv

dt
; v

t
1 [(u 1 v) ? =]v 5

dv

dt
1 (v ? =)v. (24)

Adding (v ? =)v to both sides of the vorticity transport equation for a viscous flow,
the equation governing the rate of change of vorticity at a control point is given by

dvv

dt
5 (v ? =)u 1 n=2v 1 (v ? =)v. (25)

Writing the vorticity vector as the product of its magnitude g and a unit direction
a and denoting the sum of the last two terms in (25) by the vector D, we can use
(22) to write

D 5 ng =2(ln g)a 2 g(v ? =)a 1 ng =2a. (26)

In order to obtain v and the diffusion term D, it is necessary to approximate the
first and second derivatives of ln g and two components of the vector a. Derivatives
of the third component of a can be obtained from the derivatives of the first two
components and the observation that a is a unit vector.

The results (22)–(26) hold for all three-dimensional flows, and simplifications for
axisymmetric flows are obtained simply by writing (22)–(26) in cylindrical polar
coordinates and dropping all derivatives with respect to u. For control points located
on the symmetry axis, only the axial components of v and D are nonzero. Since
the vorticity flux (and hence the radial vorticity gradient) must vanish as r R 0, a
Taylor series expansion of ln g about the symmetry axis gives

ln g(r, z, t) 5 ln g(0, z, t) 1
r2

2
2(ln g)

r2 U
r50

1 O(r3). (27)

Differentiating (27) with respect to r, dividing by r, and then taking the limit as
r R 0 yields

lim
rR0

1
r

(ln g)
r

5
2(ln g)

r2 U
r50

. (28)
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An equation similar to (28) can also be written for the radial derivative of the axial
component of the vector a.

(b) Differentiation on Irregularly Spaced Points

In the present paper, derivatives are computed using a moving least-square
method, in which a polynomial is fit to the values of some function T(x), in the
region about each point xm , where the derivatives of T(x) are desired, by minimizing
a localized least-square error. For instance, in one dimension a quadratic approxima-
tion qm(t) to T(x), in the neighborhood of the point xm , has the form

qm(x) ; Tm 1 Bm Sx 2 xm

d D1 Cm Sx 2 xm

d D2

, (29)

where Tm ; T(xm) and Bm and Cm are unknown coefficients. An ‘‘error’’ Jm is
defined by

Jm ; ON
n51

Lnm [Tn 2 qm(xn)]2, (30)

where Lnm is a localizing function. A convenient choice for Lnm is

Lnm 5 exp F2
(xn 2 xm)2

d2 G , (31)

where d is a length scale of O(Dx). The error is minimized by setting the partial
derivatives of Jm with respect to Bm and Cm equal to zero, yielding a system of two
linear algebraic equations for these coefficients of the form

Jm

Bm
5 0 5 ON

n51
Lnm[Tn 2 qm(xn)] Sxn 2 xm

d D (32a)

Jm

Cm
5 0 5 ON

n51
Lnm[Tn 2 qm(xn)] Sxn 2 xm

d D2

. (32b)

Once Bm and Cm are obtained by solution of (32a) and (32b), the first and second
derivatives of T(x) at xm are given simply by Bm/d and 2Cm/d2, respectively.

Tests of this differentiation algorithm were performed in one dimension using
the Gaussian function T(x) 5 exp(2x2). In these tests, the control points are initially
distributed over an interval (23, 3) with uniform spacing Dx, and they are then
randomly displaced with an amplitude «Dx, where « is a measure of control point
irregularity. A plot of the second derivatives of T computed by solution of the
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FIG. 1. Plot of the second derivatives of a Gaussian function T 5 exp(2x2) in one dimension as
computed using the moving least-square method for (a) « 5 0 (circles) and (b) « 5 0.4 (squares), in
comparison to the exact result (solid curve). The average control point spacing is Dx 5 0.05 and the
localization length scale is d 5 2Dx.

system (32), with d 5 2Dx and Dx 5 0.05, is given in Fig. 1 for a case with a uniform
grid (circles) and a case of very irregular point spacing with « 5 0.4 (squares), in
comparison to the exact second derivative shown by a solid curve. The relative
root-mean-square (rms) error, defined as the root-mean-square error divided by
the maximum value of the second derivative over the computed interval, is plotted
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FIG. 2. Plot showing the variation of the relative root-mean-square error as a function of the
irregularity parameter « for the one-dimensional test described in the caption to Fig. 1, both for the
moving least-square method (circles) and for the standard centered-difference method for irregularly
spaced points (triangles).

in Fig. 2 as a function of « both for the moving least-square method (circles) and
for the standard centered-difference approximation for irregularly spaced points
(triangles). The rms error for the moving least-squares method is remarkably insensi-
tive to change in «.

The convergence rate of the moving least-square method was examined by
performing runs with different values of Dx for both « 5 0 and « 5 0.4. The results,
shown on a log–log scale in Fig. 3, indicate a convergence rate of about 1.9 both
for the case of a uniform grid (« 5 0) and for the case with very irregularly spaced
points (« 5 0.4). By contrast, the convergence rate of the second derivative for

FIG. 3. Log–log plot showing the convergence rate of the moving least-square method for the one-
dimensional test described in the caption of Fig. 1, with « 5 0 (circles) and « 5 0.4 (triangles). The
slope of the best-fit line for the « 5 0 case is approximately 1.9.
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the standard centered-difference approximation on a randomly perturbed grid is
approximately first-order in Dx [24].

Tests have also been performed with various values of the length scale d (see
[12]). It is found that the predictions of the moving least-square method are not
particularly sensitive to this parameter for d . Dx, although the best results are
obtained for d between about 1 and 3 times Dx. For values of d much less than Dx,
the error from the moving least-squares method increases for irregularly spaced
points as d is decreased, whereas for uniformly spaced points the moving least-
square method reduces to the standard centered-difference approximation as d R 0.

In the solution of the vorticity transport equations of the form (25), differentiation
of ln g and of the components of the unit vector a is necessary in order to obtain
the vectors v and D in (22) and (26). Furthermore, differentiation of the radial and
axial velocity components is necessary in order to obtain the vortex stretching terms
in (1). In an axisymmetric flow, the first and second derivatives of some function
f(r, z) at a point (rm, zm) are approximated by differentiating a polynomial fit of
the form

qm(r, z) ; fm 1 Sr 2 rm

dm
D1 Cm Sz 2 zm

dm
D1 Dm Sr 2 rm

dm
DSz 2 zm

dm
D

1 Em Sr 2 rm

dm
D2

1 Fm Sz 2 zm

dm
D2

. (33)

An ‘‘error’’ Jm is defined by

Jm ; ON
n51

Lmn [ fn 2 qm(rn , zn)]2, (34)

where we choose

Lnm 5 exp F2
(rn 2 rm)2 1 (zn 2 zm)2

d 2
m

G . (35)

Minimizing Jm with respect to the coefficients in (33) yields

ON
n51

Lnm Srn 2 rm

dm
DiSzn 2 zm

dm
Dj

[ fn 2 qm(rn , zn)] 5 0,

hi, j: (i, j) [ (0, 1, 2); 0 , i 1 j , 3j. (36)

Equation (36) represents a system of five linear equations for the five unknown
coefficients in (33). After solution for these coefficients, the gradient and Laplacian
of f(r, z) are approximated by

=f um > 1
dm

(Bmer 1 Cmez), (37a)

=2f um > 2
Em 1 Fm

d2
m

. (37b)
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4. VALIDATION TESTS FOR AXISYMMETRIC FLOWS

The axisymmetric vorticity collocation method was tested using a variety of
validation calculations, in which the evolution of the computed flow over time is
compared to different analytical results. The first two test calculations, reported in
this section, involve inviscid axisymmetric flows without swirl.

The first set of test calculations examines the ability of the axisymmetric vortex
method to replicate the self-induced velocity of thin-core vortex rings. Test calcula-
tions were performed using 316 vorticity elements initially distributed within a torus
of circular cross-section, which formed a vortex ring of strength G, nominal core
radius s, and ring radius R. In the following, all length, time, and velocity scales
are nondimensionalized by s, s 2/G, and s/G, respectively. The radii dn of the
vorticity elements was set adaptively to be approximately twice the distance to the
nearest element control points and had a mean value of about 0.2. The vorticity at
the control point locations was initially prescribed to be proportional to the radial
distance r from the symmetry axis. Calculations were performed with different
values of R, in each of which the distance of ring centroid propagation was measured
over a fixed time interval 0 # t # 50. Each computation lasted for 500 time steps,
and the rings were observed to propagate over a distance of between 2 to 4.5 core
radii. The vorticity contours were nearly constant with time during all runs, aside
from some slight deformation of the core shape for small values of R.

While the outermost element controids were placed at a distance equal to the
nominal core radius from the center axis of the ring, the vorticity distribution within
the ring cross section had a larger effective radius sE , given approximately by the
sum s 1 d of the nominal core radius and the average blob radius, due to the fact
that vorticity associated with the outermost blobs decayed exponentially outside
of the nominal core radius with a typical length scale d. A plot comparing the
computed ring propagation speeds versus the theoretical value for uniform vorticity
distribution [25], given by

U > 1
4fR

[ln(8R/sE) 2 0.25], (38)

is shown in Fig. 4, where the theoretical results for effective (dimensionless) radius
sE 5 1 1 d > 1.2 are shown by a solid curve. The theoretical results agree well
with the computed results, with a difference less than 1.0% for R $ 4. The computed
results deviate somewhat more from the predictions of (38) for R # 3, as would
be expected from the observation that the thin-core ring theory used to obtain (38)
breaks down for small R.

The second test calculation examines the evolution of the spherical vortex of
Hill [26]. This calculation was performed using 1900 ring-like vorticity elements,
whose centroids were initially randomly distributed in a half circle of radius a
centered at the origin of the cylindrical coordinate system, and 100 blob-like ele-
ments with control points placed directly on the symmetry axis. The vorticity field
is proportional to the radial distance r from the symmetry axis, and the vortex
strength is denoted by A. For this test, length, time, and velocity scales are nondimen-
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FIG. 4. Plot of dimensionless self-induced ring propagation speed as a function of dimensionless
ring radius. The theoretical prediction from Eq. (38) with effective radius sE 5 1.2 is indicated by a
solid curve and the computational results are indicated by circles.

sionalized by a, 1/(aA), and a2A, respectively. The mean value of the element radius
dn was about 0.09 during the calculation, so that the effective radius of the spherical
vortex was aE 5 1 1 d > 1.09. The solution of Hill [26] gives the dimensionless
propagation speed of the vortex as

U 5
2
15

a2
E . (39)

The computation examined the vortex evolution over a time interval 0 # t # 30,
which was discretized using 300 equal time steps. Computational results are shown
in Fig. 5 at two time steps. During the computation, the vortex propagated a distance
of nearly five sphere radii. The computed propagation speed of the vortex centroid
during this time interval was 0.157 6 0.003, while the theoretical propagation speed
based on (39) was 0.158. The vorticity magnitude remained proportional to the
radial distance r from the symmetry axis throughout the run. It is noted that the
spherical vortex is unstable to axisymmetric disturbances [27], which leads to shed-
ding of vorticity elements in a tail behind the vortex during the later parts of the

FIG. 5. Velocity vectors, attached to each control point, for a simulation of Hill’s spherical vortex.
The vectors are plotted at times t 5 0.9, just after initiation, and t 5 29.9. A trailing ‘‘tail’’ is apparent
at the later time due to vortex instability.
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computation (see Fig. 5). As noted previously by Pozrikidis [28], the vorticity nearest
the axis of symmetry is swept downstream and the spherical vortex evolves into a
fat-cored vortex ring of the class considered by Norbury [29].

5. VALIDATION TESTS FOR THE VISCOUS DIFFUSION METHOD

Validation tests are presented in this section for the moving least-square viscous
diffusion method in an axisymmetric swirling flow. We examine the diffusion of a
columnar vortex, centered on the symmetry axis, with Gaussian distributions of
both axial velocity and axial vorticity. The flow is assumed to be periodic over a
length L in the direction of the symmetry axis. The periodic boundary condition
was enforced by including one period of the vorticity field in the Biot–Savart integral
on each side of the computed section of the flow. The calculation was initiated by
placing points on a uniform grid in the region 2L/2 , z , L/2 and 0 , r , a of
the r–z plane, where the bottom row of points on this grid were placed on the
symmetry axis. The points off the symmetry axis were then randomly displaced by
an amount with maximum value of 30% of their initial separation distance, so that
the initial point spacing was quite irregular. The axial vorticity distribution was
initially prescribed to be proportional to the Gaussian exp(2r2/s 2) with ‘‘radius’’
s, and the azimuthal vorticity distribution was initially proportional to the product
of the radial distance r times a Gaussian of radius s. The magnitudes of the axial
and azimuthal vorticity were scaled to yield a prescribed vortex circulation G and
axial flow rate Q on the initial plane. In the remainder of this section, all length,
time, and velocity variables are nondimensionalized by a, a2/G, and a/G, respectively.
In the computations, the period length L 5 4 and the Gaussian radius s 5 0.5.

The diffusion was performed using an explicit second-order predictor–corrector
method for which the stability condition has the form

Dt #
s,2

2n
, (40)

where , is the minimum distance between any two control points, n is the kinematic
viscosity, and s is an adjustable constant. In numerous tests, for both two-dimen-
sional and axisymmetric flow, we have found that the moving least-square diffusion
scheme is stable provided that s is less than about 5–7. The time step was set
adaptively according to (40), where in the present computations we set s 5 0.5. A
minimum value of the separation distance , was prescribed, such that when two
control points approached closer than this minimum distance they were combined
using the procedure described in Section 2.

Analytical solutions for variation of the axial and azimuthal vorticity and velocity
components are given by

gz 5
G

fR2 exp(2r2/R2), gu 5
2Qr
fR4 exp(2r2/R2),

(41)

uz 5
Q

fR2 exp(2r2/R2), uu 5
G

2fr
[1 2 exp(2r2/R2)],
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FIG. 6. Plot of the computed axial and azimuthal velocity profiles (circles) versus the theoretical
values (solid curves) for a columnar vortex with prescribed Gaussian axial vorticity profile and Gaussian
axial velocity profile.

where R(t) ; 4n(t 1 t0). A comparison of the computed and analytical induced
axial and azimuthal velocity components at the initial time is shown in Fig. 6, which
was obtained for a case initiated with 21 points in the radial direction and 51 points
in the axial direction (or 1071 total points) prior to the random displacement. The
computed velocities compare well with the analytical expressions, with the exception
of a slight offshoot of the axial velocity near the symmetry axis, which occurs due
to breakdown of the assumption that dn/rn is small. This offshoot can be further
reduced by increasing the resolution of control points near the symmetry axis,
thereby decreasing the element radius dn .

Computations were performed to assess the accuracy of the vorticity diffusion
algorithm for this flow for a case with vortex Reynolds number, Re 5 G/n, equal
to 10. The effect of resolution on the accuracy of the diffusion computations was
assessed by varying the number, Nr , of elements spanning the vortex over a radial
distance of 2s. Test computations were performed with Nr 5 21, 11, and 5 for
which the number of elements spanning the axial length L of one period of the
vortex was set to 51, 35, and 15, respectively. The element radius dn was fit adaptively
at each time step to be about twice the distance between a control point and its
closest few neighboring control points. The control point locations move outward
under the diffusion velocity for this flow, such that the furthest control points
traveled from an initial radius of 1.0 to a radius of about 2.6 during the course of
the computations. The variation of the axial and azimuthal vorticity components
with radial distance is shown in Fig. 7 for a case with Nr 5 21 at five different times.
In this plot, the computed results are indicated by symbols and the theoretical
values from (41) are indicated by solid curves. The vorticity magnitude decreases
by a little over an order of magnitude during this run, but the computed results
are found to remain extremely close to the analytical solution

The maximum error in the computational results was found to be about 1.6%,
7.5%, and 11% of the analytical solution for cases with Nr 5 21, 11, and 5, respectively.
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FIG. 7. Comparison of the computed (symbols) and theoretical (solid curves) axial and azimuthal
vorticity profiles for a diffusing vortex core. The initial axial vorticity and axial velocity profiles are
proportional to a Gaussian with radius 0.5, and the vortex Reynolds number Re ; G/n 5 10. The
profiles are shown in (a) at times t 5 0 (circles), 0.659 (triangles), and 1.48 (diamonds) and in (b) at
times t 5 1.48 (diamonds) and 4.66 (squares) for a case with initially Nr 5 21 control points in the
radial direction and 51 control points in the axial direction.

Moreover, the percentage error does not increase monotonically in time, but rather
is observed to decrease near the end of the computation. The computational results
for the maximum axial vorticity component are plotted against the analytical predic-
tion from (46) in Fig. 8 for cases with the three different values of radial resolution
Nr . Other test calculations have been performed using a similar diffusion method
for two-dimensional Gaussian vortex patches and are found to continue to yield
excellent agreement with the analytical solution for extremely long time intervals,
during which the vorticity magnitude was reduced by over two orders of magnitude.

6. VALIDATION TESTS FOR VORTEX WAVE DYNAMICS

The final validation test examines unforced oscillation of a columnar vortex due
to variation in core radius. In the test computations, the core radius is initiated as
a cosine wave with mean value s0 and wavelength 4s0 . The core is discretized by
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FIG. 8. Plot of maximum axial vorticity component, at various times, as determined by computations
versus analytical values, for diffusion of a columnar Gaussian vortex with axial flow at a vortex Reynolds
number of 10. Results for Nr 5 21 are denoted by circles; results for Nr 5 11 are denoted by triangles;
and results for Nr 5 5 are denoted by squares.

1619 ring-like vorticity elements for off-center points and 81 blob-like elements are
placed along the symmetry axis. The axial component of the initial vorticity field
is specified to be independent of r and to vary with z in such a way that the
circulation remains constant along the vortex axis. The radial component of the
initial vorticity is specified to vary linearly with r, such that the vorticity vector is
parallel to the core boundary for the outermost points on the vortex core. One
period on each side of the computed section is used in the velocity calculation.

Models for evolution of the axial velocity w(z, t) and core radius s(z, t) of a
columnar vortex were developed using a variety of different approaches by Lund-
gren and Ashurst [30], Marshall [31], and Leonard [32], all of which yield essentially
the same one-dimensional wave equations for long, weakly nonlinear area-varying
wave motions. In its simplest form (as given by Lundgren and Ashurst [30]), the
axial vorticity and axial velocity are assumed to be uniform across the vortex core.
The evolution of area-varying waves on a columnar vortex are governed by volume
conservation of the core fluid, which requires that

ds

dt
1

s

2
w
z

5 0, (42)

and by axial momentum conservation, which requires that

fs 2 dw
dt

5 2
G2

4fs

s

z
, (43)

where

df
dt

; f
t

1 w
f
z

(44)
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is the material derivative. Equation (43) represents a balance between the rate of
change of momentum within the vortex core and the axial force due to the pressure
gradient along the vortex axis, which is induced by variation of the core radius. An
analytical solution of (42)–(43) for small-amplitude, axisymmetric standing waves
on a vortex core can be obtained by letting

s(z, t) 5 s0 1 A cos(at) cos(kz), (45)

where k is the wavelength and a is the oscillation frequency, and linearizing for
small A/s0 . Solution of the linearized equations yields an expression for the wave
period p 5 2f/a as

p 5
4Ï2 f2s0

kG
. (46)

In the remainder of this section, all length, time, and velocity variables are non-
dimensionalized by s0, s 2

0/G, and s0/G, respectively. For calculations with initial
wave amplitude of 0.1, a standing wave forms on the vortex core which oscillates
nearly periodically in time. The radial and axial velocity components within the
standing wave are shown in Figs. 9a–c, using an arrow attached to each control
point, for times near the beginning, middle, and end of the oscillation period. The
axial motion within the standing wave is generated by oscillating azimuthal vorticity,
which forms when the predominantly axial vorticity component is tilted in the
azimuthal direction by an axial gradient in the swirl velocity, which arises from
variation of the core radius. The core radius variation also causes a radial tilting
of the vorticity vector which, in the presence of the ambient radial gradient of the
swirl rate near the edge of the vortex core, also leads to accumulation of the
azimuthal vorticity. In the resulting wave motion, the azimuthal vorticity magnitude
attains a minimum when the slope of the core boundary is greatest and vice versa.

The average element radius during the computations was about 0.12, which yields
an effective ambient vortex core radius of sE > 1.12. The theoretical oscillation
period predicted from (46) with this effective radius is 39.8, whereas the period
observed in the computations was about 42.3. While this agreement is fairly good,
it is noted that the result (46) is approximate, since the model on which (42)–(43)
are based makes several idealizations, such as uniform axial velocity profile.

Computations were also performed with a larger initial wave amplitude of 0.3.
Vorticity and velocity vectors in the r–z plane for this case are shown at three
different times in Figs. 10a–c and 12a–c. Contour plots of the azimuthal vorticity
component are shown in Figs. 11a–c. The standing wave was observed to break up
during the first oscillation, producing two traveling waves propagating in opposite
directions. Numerical calculations have also been performed for the model system
described by (42)–(43) using the standard MacCormack method [33], which is a
second-order predictor–corrector method in which forward differencing is used on
the predictor step and backward differencing is used on the corrector step. Calcula-
tions using the model equations (42)–(43) do not exhibit the bifurcation into two
traveling waves observed in the direct simulations with the full vorticity collocation
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FIG. 9. Velocity vectors within a standing vortex wave with initial amplitude of 10% of the mean
core radius, shown at (a) t 5 5.4, (b) t 5 17.4, and (c) t 5 35.4. The wave oscillates nearly periodically
in time with a dimensionless period of 42.3.

method (Figs. 10c and 12c). This difference, however, is due to the limitations of
the model in [30], which (like the shallow-water model for free-surface water waves)
is valid only for weakly nonlinear waves and does not account for effects of
wave dispersion.

7. CONCLUSIONS

A Lagrangian vorticity collocation method was presented for axisymmetric, vis-
cous fluid flows with or without swirl. This method has similarities to previous
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FIG. 10. Vorticity vectors in the r–z plane within a standing vortex wave with initial amplitude of
30% of the mean core radius, shown at (a) t 5 0, (b) t 5 15.6, and (c) t 5 31.6. The wave bifurcates
into two traveling waves, which propagate in opposite directions.

axisymmetric vortex methods [5, 6], but differs mainly in that the element amplitude
is adaptively fit to the vorticity values at the control points at every time step and
that the method admits both swirling and nonswirling flows. The diffusion method
presented in the paper is capable of adaptively modifying the vorticity support, and
the ‘‘moving least-square’’ differentiation method is found to maintain high accuracy
even for very irregularly spaced control points. This diffusion method can be applied
to arbitrary two- and three-dimensional flows with very slight changes. Both the
diffusion method and the axisymmetric vortex method as a whole were subjected
to a variety of validation tests, including nonswirling axisymmetric flows both far
from and close to the symmetry axis, flows which evolve only through viscous
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FIG. 11. Contour plots of the azimuthal vorticity component for the same cases shown in Fig. 10.

diffusion, and wave propagation in axisymmetric flows with swirl. The computed
results from these validation tests were consistently found to compare well with
exact solutions and with approximate solutions obtained by other means.

APPENDIX: ANALYSIS OF THE INVERSION PROCEDURE EQ. (21)
IN ONE DIMENSION

In this appendix, we derive an estimate for the vorticity error caused by the
iteration procedure (21) and also exemplify the filtering property of this iteration,
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FIG. 12. Velocity vectors in the r–z plane for the same cases shown in Fig. 10.

using a continuous, one-dimensional model for the vorticity representation (5) as
a convolution integral,

g(x) 5 Ey

2y
V(x9) f(x 2 x9) dx9. (A.1)

(i) Error Analysis

The domain of integration in (A.1) is broken up into an interval ux9 2 xu # a
close to the point x and its complement ux9 2 xu $ a:

g(x) 5 Ex1a

x2a
V(x9) f(x 2 x9) dx9 1 E

ux92xu$a
V(x9) f(x 2 x9) dx9. (A.2)
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If it is now assumed that the function f(x) is symmetric, we can use a Taylor series
to expand V(x9) about x9 5 x, together with a change in variables, to write the first
integral on the right-hand side in (A.2) as

Ex1a

x2a
V(x9) f(x 2 x9) dx 5 V(x) Ea

2a
f(j) dj 1

1
2

d 2V

dx2 U
x
Ea

2a
j 2 f(j) dj 1 ... . (A.3)

In this continuum model, the iterative procedure (21) is equivalent to setting

g(x) > V(x) Ea

2a
f(j) dj 1 E

ux92xu$a
V(x9) f(x 2 x9) dx9, (A.4)

so that (A.2)–(A.4) gives the error E in the iteration procedure to leading order as

E 5
1
2

d 2V

dx2 U
x
Ea

2a
j 2f(j) dj. (A.5)

For the case where f(x) is a Gaussian element,

f(x) 5
1

dÏf
exp(2x2/d 2), (A.6)

we have that

Ea

2a
f(j) dj 5 erf(a/d), Ea

2a
j 2 f(j) dj 5

d2

2
P S3

2
,

a2

d 2D , (A.7)

where P(?, ?) is the incomplete gamma function. In the limit d @ a, neglect of the
error (A.5) in comparison to the first term on the right-hand side (A.4) requires that

1
3

d 2V

dx2 U
x

a2 ! V(x). (A.8)

In the other limit, a @ d, neglect of this term requires that

1
4

d 2V

dx2 U
x

d 2 ! V(x). (A.9)

In the computations using the collocation method, the element radius is typically
fit adaptively to maintain a value for the ‘‘overlap,’’ d/a, of approximately two. In
this case, (A.2) becomes

g(x) 5 V(x) erf S1
2D1 E

ux2x9u$a
V(x9) f(x 2 x9) dx9 1

d 2

4
P S3

2
,
1
4D d 2V

dx2 U
x
, (A.10)

and the approximation (21) implies neglect of the last term in (A.10), which is of
order of the square of the element radius.
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(ii) Filtering Property

Taking the Fourier transform of the convolution integral (A.1) gives

ĝ(k) 5 2f V̂(k) f̂(k), (A.11)

where a ‘‘hat’’ over a variable denotes the transformed variable and k is the wave-
number. Solving (A.11) for V̂(k) and using the Gaussian (A.6) for f(x), we obtain

V̂(k) 5 ĝ(k) exp S1
4

k2R2D. (A.12)

If ĝ(k) R 0 more slowly than exp(2Afk2R2) as k R y, use of the exact inverse
(A.12) of (A.1) indicates that V̂(k) will become unbounded at high wavenumber.
Similarly, for the discrete representation (5), exact solution of the matrix equation
(20) yields values for the amplitudes which oscillate wildly between nearby con-
trol points.

Considering now the approximate representation (A.2), which corresponds to a
continuous version of (21), taking the Fourier transform with the choice (A.6) for
f(x) gives

ĝ(k) 5 V̂(k) Ferf(a/R) 1 exp S2
1
4

k2R2D (A.13)

H1 2
1
2

erf Sa
R

1
1
2

kRiD2
1
2

erf Sa
R

2
1
2

kRiDJG.

The expression (A.13) gives a high wavenumber asymptotic expression for V̂(k) as

V̂(k)p ĝ(k)
erf(a/R)

as kR R y, (A.14)

whereas the solution for V̂(k) from (A.13) approaches that given in (A.12) as
kR R 0. We thus find that the approximation (A.12) acts to force the amplitude
function V̂(k) to zero at high wavenumbers, provided only that ĝ(k) R 0 as
k R y (i.e., that g(x) is sufficiently smooth). This result, applied to the discrete
version of (A.1), confirms our empirical observations that the iteration (21) acts to
filter out oscillations in amplitude occurring on a length scale much less than the
element radius.
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